Contact us on [email protected] to request a quote
Copper, as well as alloys primarily based upon copper, are considered non-magnetic because of the copper’s atomic structure.
In nature, magnetism in metals is a result of an uneven distribution of electrons within the atomic structure of the magnetic material; electrons flow from one shell to the next and are free to spin. This free flow of electrons creates magnetic dipoles.
While copper atoms do have a single electron in their valence (or outermost) shell, when multiple copper atoms come together, these valence electrons get sent into a cloud which forms metallic bonds between the copper atoms. This makes copper diamagnetic — it repels magnetic fields.
Copper is an important constituent of Hiduron 130, a high-strength copper-nickel alloy. Like all cupronickels, Hiduron 130 is used in subsea applications such as connectors and couplings, as well as valve trim and seawater piping.
As a copper-based alloy, it is resistant to fouling and galling, making it suitable for applications which see long periods of inactivity but which are then required to operate without sticking. Therefore, avoiding the potential influence of magnetic coupling is supportive of such applications.
If you have a sufficiently strong magnetic field, all matter is magnetic – the pull being so strong that the usual electron requirements are not necessary for magnetic dipoles to form. However, it is important to note that this is not the case for every metal.
Ferromagnetic metals are metals with space on their valence shells for electrons to move around.
These metals are freely attracted to magnets, even with the absence of external magnetic fields acting upon them. Examples of Ferromagnetic Metals include:
Paramagnetic Metals, such as platinum, aluminum and uranium, have a much weaker attraction to magnets than ferromagnets and don’t maintain their magnetic properties in the absence of a magnetic field.
Diamagnetic Metals are those metals which repel magnetic fields. This repel happens because of a change in the orbital spin of electrons due to an applied external magnetic field.
When the magnetic field is taken away, the metal loses its diamagnetic properties. Copper, Bismuth, and Lead are examples of Diamagnetic Metals.
As two aspects of the electromagnetic force, magnetism and electricity are quite similar. A moving electric current generates a magnetic field, for example, and when a magnet moves near copper or other metals, it sets up electrical eddy currents.
To find out more about copper-based alloys, please contact our helpful team at Langley Alloys today. Our team is here to help you with further information or to request a quote. If you’d like to know more regarding both of our locations, this information is available via our contact page.
Our team is made up of industry experts who hold a wide range of product and service expertise. Over the years, we’ve built an incredible customer-first reputation and we’re looking forward to guiding you through what we offer and help you to find what you’re looking for. Get in touch today.
Worldwide Delivery Available
We can offer air, sea and road freight shipping options, with choice of packaging, to deliver to customers globally.
Inventory Management
Let us manage your total material requirements with call-off and consignment arrangements.
Up to 40 sizes per alloy available
More sizes equal less machining and a more cost-effective supply chain.